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Refined enumerations of alternating sign triangles
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Abstract. We generalise alternating sign triangles, which were recently introduced
by Ayyer, Behrend and Fischer and shown to be equinumerous with ASMs, to AS-
trapezoids and introduce a refinement by Catalan objects. We show that the number
of AS-trapezoids associated with a fixed Catalan object is a polynomial in the length
of the shorter base of the trapezoid. As a special case we obtain an analogue of a
polynomiality theorem for fully packed loops with nested arches.
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Introduction

In the 1980s Mills, Robbins and Rumsey [7] introduced alternating sign matrices (ASMs)
and thereby initiated a new branch in combinatorics. Over time more combinatorial ob-
jects were introduced which are equinumerous to ASMs, e. g. fully packed loops (FPLs).
FPLs led in a natural way to a refined enumeration by means of Catalan objects. This
refinement gave rise to a variety of important results, one of them is the Razumov-
Stroganov-Cantini-Sportiello Theorem [3, 8]. A new object in the ‘ASM-family’ are alter-
nating sign triangles (ASTs) which were introduced by Ayyer, Behrend and Fischer. They
could show in [2] that ASTs and ASMs are equinumerous. While there exists an easy
bijection between ASMs and FPLs there is no bijection known between ASMs and ASTs.

In this extended abstract we present a refinement of ASTs via Motzkin paths (due
to Ayyer) and by Catalan objects (centred Catalan sets). One can see already for smaller
examples that this Catalan refinement is of different nature than the one for FPLs. Our
first main result is a proof of a conjecture of Ayyer. It states that an AST associated with
a fixed Motzkin path M or a centred Catalan set S can be split into independent parts
if and only if M or S respectively is reducible. This implies that the number of ASTs
associated with a certain Motzkin path M or a centred Catalan set S respectively is given
by a product of weight functions, each depending on a irreducible component of M or S
respectively and its position in M or S respectively.
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The aforementioned independent parts are AS-trapezoids, which generalise ASTs.
By extending the centred Catalan set or Motzkin path assignment from ASTs to AS-
trapezoids, we see that the weight functions count refined AS-trapezoids. Our second
main result states that the number of AS-trapezoids associated to a fixed centred Catalan
set or Motzkin path respectively is a polynomial in the length of the shorter base of the
trapezoid. Computations indicate that the polynomials have various rational roots. We
present first results on the structure of these roots and state two conjectures concerning
them.

Finally we show that in a special case of our second main result is an analogue to a
polynomiality theorem for FPLs conjectured by Zuber in [9] and later proven in [1, 4] by
Caselli, Krattenthaler, Lass and Nadeau, and Aigner.

1 Preliminaries

We first introduce alternating sign triangles which were recently defined in [2]. Then we
define centred Catalan sets, which are in bijection to Dyck paths, and Motzkin paths and
how to associate these objects to an AST.

Definition 1.1. An alternating sign triangle (AST) of order n is a configuration of n centred
rows where the i-th row, counted from the bottom, has 2i− 1 elements. The entries are −1, 0 or 1
such that in all rows and columns the non-zero elements are alternating, all row-sums are 1 and
in every column the first non-zero entry from top is positive.

We label the columns of an AST A of order n form left to right with−(n− 1), . . . , n− 1
and the rows from bottom to top with 1, . . . , n.

Example 1.2. The following is an example of an AST of order 6

0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0

1 −1 0 0 0 0 1
0 0 1 0 0

1 −1 1
1

Theorem 1.3 ([2]). The number of ASTs of order n is given by

n−1

∏
i=0

(3i + 1)!
(n + i)!

,

i. e. order n ASTs and n× n ASMs are equinumerous.
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{−3,−1, 0, 1, 3, 4} ⇔

Figure 1: A centred Catalan set of size 6 and its corresponding Dyck path.

Definition 1.4. A centred Catalan set S of size n is an n-subset of {−(n− 1),−(n− 2), . . . , n−
1} such that |S ∩ {−i,−i + 1, . . . , i}| ≥ i + 1 for all 0 ≤ i ≤ n− 1.

The centred Catalan sets of size n are in bijection with Dyck paths of length 2n. For
a given centred Catalan set S, we construct a Dyck path D(S) in the following way. We
read the integers −(n− 1), . . . , n− 1, n in the order 0,−1, 1,−2, 2, . . . ,−(n− 1), n− 1, n
and draw a north-east step if the number is in S and a south-east step otherwise. There
are in total 2n−1 different bijections of the above kind between centred Catalan sets of
size n and Dyck paths of length 2n. For every 1 ≤ i ≤ n− 1 we can switch the order of
reading −i, i in the above algorithm and obtain a new bijection.

Proposition 1.5. Let S(A) be the set of labels of columns with positive column-sum. Then S(A)
is a centred Catalan set of size n and for all centred Catalan sets S of size n there exists an AST
A of order n with S(A) = S.

Proof. The set S(A) is an n-subset of {−(n − 1), . . . , n − 1}. Define Si(A) as the set of
columns j such that |j| < i and the partial column-sum of elements below the (i + 1)-th
row is positive. We have the following relations between Si(A) and S(A)

S(A) =
⋃

1≤i≤n

Si(A),

Si+1(A) ⊆ S ∩ {−i,−i + 1, . . . , i}.

Since the partial column-sums can only have the values 1, 0,−1 and the sum of all these
partial column-sums is i we obtain |Si(A)| ≥ i, which implies the first claim. Now let S
be given. By definition we can choose a sequence (si)1≤i≤n such that S = {si : 1 ≤ i ≤ n}
and |si| < i. Hence there exists an AST such that the entry in column si of the i-th row
is 1 for all 1 ≤ i ≤ n and the other entries are 0.

A Motzkin path of length n is a path on the half-plane y ≥ 0 starting at (0, 0) and
ending at (n, 0) with step-set {(1, 1), (1, 0), (1,−1)}. We encode a Motzkin path M of
length n by a sequence M = (m1, . . . , mn) with entries mi ∈ {1, 0,−1} for 1 ≤ i ≤
n where an entry mi encodes the step (1, mi). We define M(D) as the Motzkin path
obtained by averaging the steps in the Dyck path D: the i-th step of M(D) is the average
of the (2i)-th and (2i + 1)-th step of D. By averaging we mean that two north-east steps
result in a north-east step, a north-east step and a south-east step in an east step and two
south-east steps in a south-east step. This map is a surjection from Dyck paths of length
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D M(D)

Figure 2: A Dyck path and its corresponding Motzkin path.

2n to Motzkin paths of length n− 1. For a centred Catalan set S of size n the Motzkin
path M(S) := M(D(S)) = (m1(S), . . . , mn−1(S)) is given by

mi(S) :=


1 |{−i, i} ∩ S| = 2,
0 |{−i, i} ∩ S| = 1,
−1 |{−i, i} ∩ S| = 0.

The following refinement of ASTs by Motzkin paths is due to Ayyer.

Corollary 1.6. The map M(A) := M(S(A)) is a surjection from ASTs of order n to Motzkin
paths of length n− 1.

2 The structure of ASTs

For two Motzkin paths M1, M2 we denote by M1 ◦M2 their concatenation. Ayyer con-
jectured that the number w(M) of ASTs associated to the Motzkin path M = M1 ◦ M2
is a product of two weight functions each depending on M1 and M2 respectively and its
position in M. We found out that this computational fact is based on a structural reason,
namely that we can split an AST associated to M1 ◦M2 into two independent parts, one
associated to M1 the other to M2. The next lemma plays a key role.

Lemma 2.1. Let S be a centred Catalan set of size n and A an AST with S(A) = S and write
M(S) = (m1, . . . mn−1). The number of 1 entries in the (r + 1)− th row is at most 1+∑r

i=1 mi.
Further there exists an AST such that equality holds.

Proof. An allowed position for a 1 in the i-th row of A is a position such that the next
non-zero entry below is negative or all entries below are 0 and the label of the column
is in S. Denote by ai the number of allowed positions for a 1 in the i-th row. Since every
1 (respectively −1) in the i-th row cancels out (respectively adds) an allowed position
for a 1 in the (i + 1)-th row and there is one more 1 than −1 in every row, the number
of allowed positions in the central 2i− 1 columns of the (i + 1)-th row is ai − 1. There
are two new columns in row i + 1 of which mi + 1 have a label in S. Hence we obtain
ai+1 = ai + mi and therefore

ai+1 = a1 +
i

∑
j=1

mi = 1 +
i

∑
j=1

mi.
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We construct an AST A with S(A) = S and a maximal number of 1’s in a recursive
manner. Place in the i-th row a 1 in all allowed positions and put a −1 between the 1
entries. Since the allowed positions are either the most left or right positions of a row
or above a −1 from the row before, two allowed positions are by induction not direct
neighbours. Therefore it is always possible to place a new row by the above algorithm.
By the above formula there is only one allowed position in the top row. If there exists a
column in A with a −1 as first non-zero entry form top there would be a second allowed
position in the top row. Hence the resulting array is an AST.

We say that a Motzkin path M is irreducible if and only if there exist no Motzkin paths
M1, M2 such that M can be written as concatenation M1 ◦M2 of the two paths. Let l be
an integer and define the dilation operator sl : Z→ Z as

sl(x) =


x + l x > 0,
0 x = 0,
x− l x < 0.

By abuse of notation we write sl : 2Z → 2Z, sl(A) = {sl(x)|x ∈ A}. We call a centred
Catalan set S of size n irreducible if there exist no centred Catalan sets S1, S2 of sizes n1 or
n− n1 + 1 respectively such that S = S1 ∪ sn1−1(S2). We can split every centred Catalan
set S uniquely into irreducible centred Catalan sets S1, . . . , Sl of size n1, . . . , nl such that

S = S1 ∪ sn1−1(S2) ∪ · · · ∪ sjl(Sl),

where jl = ∑l−1
i=1(ni − 1). We denote this splitting by S = (S1, . . . , Sl). The Dyck

path D((S1, . . . , Sl)) is obtained by deleting the last step of D(S1), . . . , D(Sl−1), delet-
ing the first step of D(2), . . . D(Sl) and concatenating all paths. The Motzkin path
M((S1, . . . , Sl)) is given as the concatenation of the Motzkin paths of its irreducible
components M(S1) ◦M(S2) ◦ . . . ◦M(Sl). Further every irreducible component of M(S)
corresponds to an irreducible component of S. For an example see Figure 3.

We define the weight w(S) (respectively w(M)) of a centred Catalan set S (respectively
Motzkin path M) as the number of ASTs A with S(A) = A (respectively M(A) = M).

Definition 2.2. An (n, l)-AS-trapezoid is an array of n centred rows where the i-th row from
bottom has 2(l + i)− 1 entries, filled with −1, 0 or 1 such that all row-sums are 1, the column-
sums are 0 for the central 2l − 1 columns, the non-zero entries in all rows and columns are
alternating and in every row the first non-zero entry from top is positive.

ASTs of order n + 1 and (n, 1)-AS-trapezoids are in bijection by deleting the bottom 1
of an AST or adding a 1 in the bottom of an (n, 1)-AS-trapezoid. We label the rows of an
(n, l)-AS-trapezoid from bottom to top with 1, . . . , n and the columns from left to right
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D(S1) D(S2)

D((S1, S2))

M(S1) M(S2)

M((S1, S2))

Figure 3: The Dyck and Motzkin paths of the centred Catalan set S = {−3,−1, 0, 1, 3, 4}
and its irreducible components S1 = {−1, 0, 1} and S2 = {−1, 0, 1, 2}.

by −(n + l− 1), . . . , (n + l− 1). We define the set S(A) as the centred Catalan set S such
that sl−1(S) \ {0} is the set of columns of A with positive column-sum. Analogously to
Proposition 1.5 the set S(A) is indeed a centred Catalan set. The following is an example
of a (3, 3)-AS-trapezoid A with S(A) = {−1, 0, 1, 2}

0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0

1 −1 0 0 0 0 1

For a centred Catalan set S of size n + 1 we define wl(S) as the number of (n, l)-
trapezoids A with S(A) = S.

Theorem 2.3. For centred Catalan sets S1, S2 of size l or n + 1 respectively holds

w(S1 ∪ sl−1(S2)) = w(S1)wl(S2), (2.1)

i. e. the weight function is “multiplicative”.

Proof. Let A1 be an AST of order l and A2 an (n, l)-AS-trapezoid such that S(Ai) = Si
for i = 1, 2. By putting A2 on top of A1 we obtain an AST A of order n + l with
S(A) = (S1, S2). On the other hand let A be an AST with S(A) = S = S1 ∪ sl−1(S2). We
split A into a bottom part A1 consisting of the first l rows from bottom and a top part
A2 consisting of the remaining rows. By Lemma 2.1 there is only one allowed position
for a 1 in the top row of A1. If A1 had a column whose first non-zero entry from top is
negative, there would be a second allowed position for a 1 in the top row of A1. Hence
A1 is an AST of order l with S(A1) = S1. A column of A with label −l < λ < l has
column-sum 1 if and only if λ ∈ S1 = S(A1). Hence the column-sums of the central
2l − 1 columns of A2 are zero, which implies that A2 is an (n, l)-AS-trapezoid and A1
and A2 are independent. The definitions of the weight functions imply (2.1).

The following Corollary was a former conjecture by Ayyer.
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k2 k3

k4 k5 k6

k8
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s3s2

k7

t7
t8

Figure 4: Schematic diagram of an (s, t)-tree.

Corollary 2.4. Define for a Motzkin path M the weight wl(M) as the number of (n, l)-AS-
trapezoids A with M(S(A)) = M. Then Theorem 2.3 holds analogously for Motzkin paths
instead of centred Catalan sets.

3 The refined enumeration of AS-trapezoids

The aim of this section is to prove that the weight function wl(S) is a polynomial in l.
First we need the following definition which is due to Fischer [5].

Definition 3.1. Let 1 ≤ u < v ≤ n, s = (s1, . . . , su) be a weakly decreasing sequence of non-
negative integers, t = (tv, . . . , tn) a weakly increasing sequence of non-negative integers and
k = (k1, . . . , kn) an increasing sequence of integers. An (s, t)-tree with bottom entries k is a
triangular array of integers with the following properties:

• The entries are weakly increasing in north-east and south-east direction and strictly in-
creasing in east direction.

• For 1 ≤ i ≤ u the bottom si elements in the i-th north-east diagonal are deleted and the
bottom entry of this north-east diagonal is ki. This entry does not have to be less than its
right neighbour.

• For v ≤ i ≤ n the bottom ti elements in the i-th south-east diagonal are deleted. The bottom
entry of this south-east diagonal is ki. This entry does not have to be greater than its left
neighbour.

• The entries in the bottom row are ku+1, . . . , kv−1.

Let S be an irreducible centred Catalan set of size n + 1 ≥ 3. We write S = {−s1 −
1, . . . ,−su− 1,−1, 0, 1, tu+3 + 1, . . . , tn + 1} where (si)1≤i≤u or (ti)u+3≤i≤n is a decreasing
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sequence or an increasing sequence respectively of positive integers. Set s = (s1, . . . , su),
t = (tu+3, . . . , tn) and k = (−l − s1, . . . ,−l − su,−l, l, l + tu+3, . . . , l + tn). The following
algorithm is a bijection between (n, l)-AS-trapezoids A with S(A) = S and (s, t)-trees
with bottom entries k. First we construct a triangular array TA. We fill the i-th row from
bottom of TA by the column labels of A for which the first non-zero entry above the
i− 1-th row is positive. Thereby we write the numbers in an increasing order from left
to right. The bottom row of TA is k. Since in every row of the trapezoid there is one more
1 than −1 the number of entries in a row of TA is one less than the number of entries in
the row below. Further it is easy to see that the entries of TA are weakly increasing in
north-east and south-east direction. Since the column-sum of the (−l − si)-th column of
A is 1, the first si + 1 entries of the i-th north-east diagonal of TA for 1 ≤ i ≤ u will be
(−l − si). Hence we can delete without loss of information si of them. Analogously the
first ti + 1 entries of the i-th north-east diagonal of TA will be l + ti for u + 3 ≤ i ≤ n and
we can delete ti of them. The resulting array TA is an (s, t)-tree with bottom entries k.
On the other hand it is not difficult to see that every such (s, t)-tree is of the form TA.

Proposition 3.2. Let S be an irreducible centred Catalan set of size n+ 1 ≥ 3. The map A 7→ TA
from (n, l)-AS-trapezoids to (s, t)-trees with bottom entries k as described above is a bijection.

Example 3.3. Let S = {−1, 0, 1, 2} and −l < a < l. The (3, l)-AS-trapezoids as on the left
side of (3.1), where the −1 is in column a, correspond by the above algorithm to the (s, t)-trees
with bottom entries k on the right side of (3.1), where s, t, k are defined as before.

0 0 0 · · · 0 0 0 · · · 0 0 1 0
0 0 · · · 0 1 0 · · · 0 0 0

1 · · · 0 −1 0 · · · 0 1
↔

l + 1
a l + 1

−l l
. (3.1)

Let f be a function in x. Denote by ∆ x( f ) := f (x + 1)− f (x) the forward difference
of f and by ∆ x := f (x)− f (x− 1) the backward difference of f .

Theorem 3.4 ([6]). Set

α(n; k1, . . . , kn) := ∏
1≤p<q≤n

(Id + ∆ kp ∆ kq + ∆ kq) ∏
1≤p<q≤n

kq − kp

q− p
. (3.2)

The number of (s, t)-trees with bottom entries k = (k1, . . . , kn) is given by

(−∆
s1
k1
) · · · (−∆

su
ku)∆

tv
kv
· · ·∆ tn

kn
α(n; k1, . . . , kn). (3.3)

With the above theorem at hand it is not difficult to prove the following theorem.

Theorem 3.5. Let S be a centred Catalan set of size n + 1. The weight wl(S) is a polynomial in
l of degree area(M(S)), where area(M(S)) denotes the area enclosed by M(S) and the x-axis.
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Figure 5: The two possibilities of changes between M(S) and M(S′) at the positions
i0, i0 + 1, i0 + 2.

Proof. Theorem 2.3 implies wl((S1, S2)) = wl(S1)wl+|S1|−1(S2). Hence it suffices to as-
sume S to be irreducible. Let s, t, k be as above. Theorem 3.4 implies that the number of
(s, t)-trees with bottom row k is a polynomial in l. Denote by d(S) the degree of wl(S).
We show by induction on area(M(S)) that d(S) ≤ area(M(S)). The degree d(S) is at
most the degree of the polynomial α(n; k1, · · · , kn) minus the number of ∆, ∆ operators
appearing in (3.3)

d(S) ≤
(

n
2

)
−

u

∑
i=1

si −
n

∑
i=u+3

ti =

(
n
2

)
− ∑

i∈S\{0}
(|i| − 1). (3.4)

It suffices to show (n
2) = ∑i∈S\{0}(|i| − 1) + area(M(S)). If area(M(S)) = 0, exactly one

of i and −i is in S for all 1 ≤ i ≤ n, hence ∑i∈S\{0}(|i| − 1) = ∑n
i=1(i − 1) = (n

2). If
area(M(S)) > 0 denote by i0 the largest integer with 1 ≤ i0 ≤ n− 1 and {−i0, i0} ⊆ S. It
follows that the set

S′ :=

{
(S \ {i0}) ∪ {i0 + 1} (i0 + 1) /∈ S,
(S \ {i0}) ∪ {−(i0 + 1)} −(i0 + 1) /∈ S,

is a centred Catalan set. The paths M(S) and M(S′) differ only in the i0-th and (i0 + 1)-th
step as shown in Figure 5. This implies that area(M(S′)) = area(M(S))− 1. On the other
hand the sum over all i ∈ S \ {0} in (3.4) is one less than the sum over all i ∈ S′ \ {0}
which proves the claim.

We conclude the proof by showing the existence of a subset of (s, t)-trees with bottom
entries k which grows polynomial in l of degree area(M(S)). By a similar proof as
for the degree above we can show that there are area(M(S)) entries in an (s, t)-tree
which are not fixed by definition. Let us denote these entries by x1, . . . , xarea(M(S)). For

l ≥
⌈

area(M(S))−1
2

⌉
there exists an (s, t)-tree T such that the entries x1, . . . , xarea(M(S))

are pairwise different and lie between −l and l. We relabel these entries such that
−l ≤ x1 < . . . < xarea(M(S)) ≤ l holds. The number of (s, t)-trees with bottom entries k
and −l ≤ x1 < . . . < xarea(M(S)) ≤ l is given by

|{(x1, . . . , xarea(M(S))) : −l ≤ x1 < . . . < xarea(M(S)) ≤ l}| =
(

2l + 1
area(M(S))

)
.
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Corollary 3.6. Theorem 3.5 holds analogously for wl(M) where M is a Motzkin path.

Remark 3.7. Let π denote the bijection between Dyck paths of length 2n and noncrossing match-
ings of size n. Let S1, S2 be two centred Catalan sets of size n1 or n2 respectively and m a
positive integer. We define S(m) = S1 ∪ {n1, n1 + 1, . . . , n1 + m− 1} ∪ sn1+m−1(S2). The non-
crossing matching π(D(S(m))) consists of the two matchings π(D(S1)) and π(D(S2)), which
are separated by m ‘small arches’. By Theorem 2.3 and Theorem 3.5 the weight w(S(m)) =
w(S1)wn1+m(S2) is a polynomial in m. An analogous theorem [1, Thm 1.1] exists for fully
packed loops (FPLs) which are equinumerous to ASTs. It states that the number of FPLs whose
associated noncrossing matching is given by two noncrossing matchings π1 and π2, separated by
m ‘nested arches’, is a polynomial in m. This is remarkable since the refinements of ASTs or FPLs
respectively by Catalan objects are of different nature and the polynomiality theorems differ (be-
side the statements for the degree and leading coefficient) only in the dual notions ‘nested arches’
and ‘small arches’.

The following table lists the weight functions of irreducible Motzkin paths up to size 5.
M wl(M)

2
(2l + 1)
2(2l + 1)(l + 2)

1
3(2l + 1)(l + 1)(l + 3)(2l + 7)
4(2l + 1)(l + 2)(l + 3)

1
9(2l + 1)(l + 1)(2l + 7)(2l3 + 23l2 + 84l + 90)

2
3(2l + 1)(l + 1)(l + 3)(l + 4)(2l + 7)

2
3(2l + 1)(2l4 + 25l3 + 113l2 + 216l + 147)
8(2l + 1)(l + 2)(l + 3)(l + 4)

As one can see in the above table, the polynomials wl(M) (and analogously wl(S)) are
rich in rational roots. The following two propositions give first explanations for these.

Proposition 3.8. Let M be a Motzkin path of length n ending with an south-east step and denote
by M′ the Motzkin path of length n + 1 obtained by putting an east step in front of the last step
of M, i. e., if M = (1,−1) then M′ = (1, 0,−1). The weight wl(M′) is given by

wl(M′) = 2(l + n)wl(M).

Proof. Let A′ be an (n + 1, l)-AS-trapezoid with M(A′) = M′. If A′ doesn’t have a −1
in the second last row from top, the last two rows have up to horizontal and vertical
reflection of the inner 2(n + l)− 1 columns the form

0 1 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 1 0 · · · 0

.
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By reflecting the top two rows in such a way such that one obtains the above form and
deleting the top row we obtain an (n, l)-AS-trapezoid A with M(A) = M. Now assume
A′ has a −1 entry in its second last row from top. Then the two top rows have up to
horizontal reflection the form

0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0
1 0 · · · 0 −1 0 · · · 0 1 0 · · · 0

.

If we delete the top row and delete in the second row from top the left 1 and the −1 we
obtain again an (n, l)-AS-trapezoid A with M(A) = M. On the other hand starting from
an (n, l)-AS-trapezoid A we can construct 4 or 2(n + l− 2) AS-trapezoids A′ with no −1
or one −1 respectively in the second row from top and M(A′) = M′, which proves the
claim.

Proposition 3.9. Let S be an irreducible centred Catalan set of size n + 1 ≥ 3 then wl(S) is
divisible by (2l + 1).

Proof. Let s, t, k be as before. Denote by s′, t′ the sequences s, t but with the entry 1
removed and set k′ equals the sequence {k1, . . . , kn} but with the variable x instead of
−l, l. The (s′, t′)-trees with k′ as bottom entries and −l ≤ x ≤ l correspond to the (s, t)-
trees where the bottom row is deleted. Let f (l, x) be the function that counts the number
of (s′, t′)-trees with bottom entries k′. By Theorem 3.4 f (l, x) is a polynomial in l and x.
The weight wl(S) is given by

wl(S) =
l

∑
x=−l

f (l, x) =

(
L

∑
x=0

f (l, x− l)

)
|L=2l

.

Let p(x) be a polynomial in x and define

P(x) =


∑x

i=0 p(i) x ≥ 0,
0 x = −1,
−∑−1

i=x+1 p(i) x < 0.

(3.5)

It is well known that P(x) is again a polynomial. This implies in our case

w− 1
2
(S) =

−1

∑
x=0

f (−1
2

, x +
1
2
) = 0.

Computations indicate that the above proposition holds in a more general form.

Conjecture 3.10. Let S be an irreducible Catalan set. For every positive integer i there exists a
polynomial fi(l) which decomposes into linear factors over Q such that

{−i, . . . , i} ⊆ S⇔ fi(l)|wl(S).

The first polynomials are f1(l) = (2l + 1), f2(l) = (2l + 1)(2l + 2), f3(l) = (2l + 1)(2l +
2)(2l + 3)(2l + 4), f4(l) = (2l + 1)(2l + 2)(2l + 3)(2l + 4)2(2l + 5).
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Our last conjecture is concerning the rational roots weight functions can have.

Conjecture 3.11. 1. Let M be an irreducible Motzkin path of length n ≥ 8. The rational
roots of wl(M) lie in {−1

2 ,−1, . . . ,−2n−3
2 ,−n + 1}.

2. Let S be an irreducible centred Catalan set of size n ≥ 11. The rational roots of wl(S)
lie in {−1

2 ,−1, . . . ,−2n−5
2 ,−n + 2,−n2−5n+7

2(n−3) }. Further wl(S) is divisible by (2(n −
3)l + n2 − 5n + 7) if and only if S = {−n + 2,−1, 0, 1 . . . , n − 3} or S = {−n +
3, . . . ,−1, 0, 1, n− 2}.
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